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Plagioclase feldspars with chemical formula Na0.sCa0.sAlx.sSi2.508 for their bulk composition consist 
of lamellar structures on the 1000 A scale at low temperatures. The lamellae have different compositions 
as a result of exsolution. In electron-diffraction patterns certain of the Kikuchi lines from these lamellae 
are doubled. These have been utilized for lattice-parameter determination by a method which is based 
on measurements of the differences in the orientation of the atomic planes in the lamellae. The factors 
determining the accuracy are discussed. For two specimens it is found that there is a difference of about 
0"005 A between the a axes and about 0.15 ° between the y angles in the two lamellae. 

Introduction 

Labradorite is the intermediate member of the plagio- 
clase feldspars having the end members albite 
(NaA1Si3Os) and anorthite (CaA12Si2Os). The struc- 
tures of these intermediate plagioclases have been a 
matter of controversy for nearly 25 years; for a sum- 
mary see Smith (1974a, b). Recently, electron micros- 
copy has made significant contributions to a clarifica- 
tion of the crystallography associated with these 
minerals (McLaren & Marshall, 1974; Hashimoto, 
Kumao, Endoh, Nissen, Ono & Watanabe, 1976; 
Hashimoto, Nissen, Ono, Kumao, Endoh & 
Woensdregt, 1976). Specimens in the composition 
range from about 42 to 58 tool % anorthite (An) (and 
mostly containing 2-4 mol % potassium feldspar) con- 
sist at low temperatures of lamellar and domain struc- 
tures on three different scales. Firstly, the structure is 
a superlattice which is seen as fringes of 30-50 A as- 
sociated with the e-type and f-type satellites found in 
X-ray and electron-diffraction patterns. Secondly, there 
is a domain texture on the 200-500 A scale which is 
particularly clear in dark-field micrographs (McLaren 
& Marshall, 1974; Hashimoto, Nissen, Ono, Kumao, 
Endoh & Woensdregt, 1976). Thirdly, one finds a 
lamellar structure on the 1000 ,~ scale which causes 
iridescence (or the Schiller effect). These lamellae have 
been said to result from the exsolution into two 
chemically different plagioclases; a direct analysis of 
their composition with transmission electron micro- 
scopes fitted with an X-ray analysis attachment con- 
firms that the composition of the two lamellae differ 
in anorthite content, typically about 40 mol 9/0 An and 
60 mol % An (Nissen, Champness, Cliff & Lorimer, 
1973; Cliff, Champness, Nissen & Lorimer, 1976; 
Olsen, 1976b; Olsen & Lilleb/5, 1976). 

Structural differences between the two sets of 
lamellae are very slight. The main spots in X-ray and 
electron-diffraction patterns indicate only one lattice, 
and hence it has not been possible to determine the 
lattice constants of the two members by X-ray dif- 
fraction. In the electron microscope the lamellae can 

easily be observed in bright and dark-field images. The 
contrast from them differs, thus indicating different 
orientations of the atomic planes. In the electron- 
diffraction patterns certain of the Kikuchi lines are 
doubled (Nissen & Bollmann, 1968) and recently 
Olsen & Lilleb5 (1976) reported a study ofa labradorite 
where these doubled lines were utilized for the lattice- 
parameter determination. Two methods were applied. 
The first, the Kikuchi-line intersection method (Olsen, 
1976a) which was an extension of the method by Hoier 
(1969) to lower symmetry cases than cubic, could only 
detect differences in 7- The second, which is reported 
here, is referred to as the split-Kikuchi-line method 
and can be used to determine all the lattice param- 
eters. 

Determination of lattice parameters of slightly dif- 
ferent phases is a general problem in crystallography. 
Since few details of the split-Kikuchi-line method were 
given in the earlier report (Olsen & Lilleb/5, 1976), 
the purpose of the present paper is to give a more com- 
plete description of the method as well as to report 
new lattice-constant determinations and to present a 
more detailed discussion of the accuracy attainable. 

Theory 

General description 
Various methods for orientation determination of 

crystals from Kikuchi patterns have been described 
(Johari & Thomas, 1969; Pumphrey & Bowkett, 1970; 
Faivre, 1975). It has been shown that a misorientation 
of a few minutes of arc between two subgrains may be 
detected from the splitting of the lines in a selected- 
area diffraction pattern taken across the sub-boundary. 
In such cases the misorientation of the crystals can be 
described by a rotation about one axis. 

In the present labradorite case, however, the two 
lamellae have different lattice parameters. Therefore, 
the misorientation across the lamellar boundary of 
different lattice planes has to be described by different 
rotation axes. 

The split-Kikuchi-line method is based upon meas- 
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urements of the misorientation across boundaries be- 
tween exsolution lamellae and consists of the following 
steps. (1) The misorientation (the angle q~) between 
the lattice planes in the two lamellae is measured from 
the Kikuchi patterns. (2) The orientation of the 
lamellar boundary is determined by trace analysis 
(Hirsch, Howie, Nicholson, Pashley & Whelan, 1965). 
(3) A model microstructure is assumed in which the 
boundary is an invariant plane so that the structure 
of the two lamellae is described as a result, for the 
mean structure, of the operation of shears parallel to 
the lamellar plane and expansions and contractions 
normal to this plane. From the different lattice par- 
ameters for the two phases theoretical ~0 values are 
calculated. (4) The experimental and theoretical tp 
values are compared in a stereographic projection 
based on the mean lattice constants. 

Determinat ion of  the misorientation from the 
Kikuchi pattern 

Let us assume that the misorientation q~ of the lattice 
planes in the two lamellae can be described by a rota- 
tion about an axis lying in a plane parallel to the 
photographic plate. The splitting of the Kikuchi lines 
is then related to the angle q~ by the following ex- 
pression: 

q~= ~ (1) 

where AS is the distance measured on a photographic 
plate between the split lines, 2R the distance between 
the excess and the defect line and d the mean plane 
distance. 2 is the wavelength of the electrons and can 
be determined from Si standards by the Kikuchi-line 
intersection method (Hoier, 1969; Olsen, 1976a). (1) is 
an approximate relation, based on the assumption of 
small scattering angles and small misor-ientations, and 
follows immediately from Bragg's law and the geom- 
etry of the Kikuchi pattern. In practice, these ap- 
proximations do not limit the accuracy of the orienta- 
tion determinations. The main problem is associated 
with the determination of the axis which describes the 
relative orientation of the lattice planes in the two 
lamellae. The magnitude of the splitting of a particular 
Kikuchi line depends on the orientation of this rota- 
tion axis and is maximum when this axis is normal 
to the incident electron beam. Therefore, a number of 
measurements of the splitting of a particular line have 

to be made in different projections in order to deter- 
mine the maximum value. 

The structure model 

The model of the microstructure is based on theories 
for crystalline interfaces (Bollmann, 1970). 

Let a, b, c be the basic vectors of the triclinic mean 
structure. This triclinic lattice is then described in an 
orthogonal coordinate system where the z axis is per- 
pendicular to the boundary plane between the two 
lamellae and the x and y axes are parallel to this plane. 
The y axis lies along the intersection between the 
a 'c*  plane and the lamellar plane. Shears along the 
x axis and the y axis and an expansion (or contraction) 
along the z axis are now applied to the mean lattice 
in order to transform it into the lattices of the two 
lamellae. The triclinic lattice constants of the two 
lamellae can then be found. 

This procedure can be expressed by the following: 
We introduce the cell matrix 

u o =  b* (2) 

with the reciprocal basis vectors of the mean structure 
as its elements. The transformation from this mean 
lattice to the lattice of lamella No. 1 can therefore be 
written: 

Ul = O -  1D iS 1OUo =AlUo (3) 
where u~ is the cell matrix for lamella No. 1 in analogy 
with (2). D 1 and S1 describe the deformation and the 
shears which must be applied to the mean lattice and 
are given by 

D i = 1 0 , (4) 
0 l + e l  

(0  0 tanal~'y) 
$1 = 1 tan o"1 . (5) 

0 1  
The matrix O (with its inverse O-1)  describes the 

coordinate transformation from a triclinic to an 
orthogonal coordinate system and is expressed by: 

Q =  12 m2 r/2 (6) 
13 m3 n3 

where 

M2ab cos y -  pq 
l l =  MV(M2b2  q2 ) ,  

12=- -  qS23+rS33+pS31 
V]/(M2b 2 __q2) , 

b2M 2 _q2 
ml = M V ( M 2 b E _ q 2  ) , 

m 2 = 0  , 

M2bc cos cz-qr  
nl = M~/(M2b2_q2)  , 

qS12 + rS13 + pSa 1 
nz = V]/ (M2bZ_q2)  , 

p q r 
13= ~ ,  m3=  ~ ,  n 3 =  ~ .  (7) 
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M= 1/dpqr where dw, is the distance between the 
(pqr) planes. V is the volume of the unit cell of the mean 
lattice and So(i,j= 1,2,3) have their usual crystallo- 
graphic meanings (Appendix). (pqr) is the boundary Specimen 
plane between the two lamellae. L 

For lattice 2 the cell matrix is obtained as in (3): A 
A1 

* 1 * * 
U 2 =  Q - D2S2Quo  =A2Uo . (8) 

Table 1. Details of specimens examined 
Mean c o m p o s i t i o n  

(mol 30) Optical 
Locality An Ab Or feature 

Labrador, Canada 53-4 44.9 1.7 Iridescence 
Ana-Sira, Norway 50.6 46"6 2.8 Iridescence 
Ana-Sira, Norway 47-9 47-1 5.0 No iridescence 

The relation between the basic vectors in reciprocal 
and real space for the mean lattice can be written: 

u0 =Tou0 (9) 
where 

1 //$11 S12 $13~ 
To= -V--~ |S12 S22 S23). (10) 

\$13 523 $33 

Similar relations hold for lattices 1 and 2. Hence: 

u i = A  iA i -  1T2u2 = U  U 2 . (11) 

The angle between the lattice planes (hkI) in lattices 
1 and 2 can now be calculated. The relation (11) will 
simplify these calculations since u~ is expressed in 
terms of n2. 

For a given orientation of the boundary between 
the lamellae, the six parameters a~x, 0i r, el and O'2x , 
a2r, ez can be varied and the angles ~p for the different 
lattice planes calculated. The best fit between the ob- 
served and the calculated ~p values determines the 
lattice parameters for the two phases. 

Experimental 

Three specimens with compositions near 50 mol ~o 
An have been studied. Lattice parameters for one of 
the specimens (from Labrador) have been reported 
previously by Olsen & Lilleb6 (1976). In that paper 
it was suggested that the accuracy of the lattice-con- 
stant determination by the split-Kikuchi-line method 
depends mainly on the accuracy of the mean lattice 
constants determined by X-ray diffraction. In order 
to get better accuracy this specimen has been studied 
further by X-ray diffraction and more accurate re- 
sults for this specimen will be reported here. One of 
the other investigated specimens showed no irid- 
escence, no exsolution lamellae in the electron micro- 
scope and no split Kikuchi lines, but is included in 
the present study for comparison purposes. 

Thin sections parallel to (010) and (001) were ion- 
thinned and studied at 80 and 100 kV in a Philips 
EM 300 microscope equipped with an EDAX energy 
dispersive X-ray analyser. Some dark-field images were 
also taken at 200 kV in a JEM 200A microscope. 

Details of the specimens are given in Table 1. In 
the text they will be referred to as L, A, A 1. The mean 
composition of the specimens was determined by elec- 
tron microprobe analysis. 

X-ray powder diffraction photographs were taken 
with a Guinier camera with monochromatized Cu K0q 
radiation (2= 1"54051 ,~) and with Si used as internal 
standard. The mean lattice parameters were then ob- 
tained by a least-squares refinement of the diffraction 
data. In order to take into account variations in the 
mean composition and the lattice constants, two 
powder patterns were recorded from each specimen. 

Transmission electron microscopy 
Domain structures 

The two specimens L and A were found to be very 
similar. Both consist of alternating lamellae with a 
periodicity about 1600-2000 A, which produce irid- 
escence. The orientation of the lamellar boundaries was 
determined by trace analysis and found to lie near 
(7~,24, 3) (referred to the albite unit cell) in both cases. 
The composition of these lamellae has been studied 
previously and is about 40 and 60 tool % An (Olsen, 
1976b; Olsen & Lilleb6, 1976). The e and f-type 
satellite reflexions were present in diffraction patterns. 
from both specimens and correspond in both cases 
to a superstructure with a periodicity about 32 A~ in 
the [112]* direction in reciprocal space (again re- 
ferred to the albite unit cell). As discussed by Hashi- 
moto, Nissen, Ono, Kumao, Endoh & Woensdregt 
(1976), the spacing of the e and f fringes cannot be 
used as a measure of the composition of the minor 
and major Schiller lamellae, but may be a function 
of the bulk anorthite composition (Bown & Gay, 
1958). From the diagram given by Smith (1974a) of 
the wavelength of the superstructure as a function of 
the bulk anorthite content, the observed e spacings 
correspond to a mean composition of (52 + 2) tool % 
An. 

Dark-field microscopy using a pair of the e-type 
satellite reflexions from specimen A revealed the 
domain structures shown in Fig. 1. A random distribu- 
tion of domains (200-500 /~ in size) was observed. 
This irregular domain structure is similar to the struc- 
ture observed by McLaren & Marshall (1974) in 
An32. 

Kikuchi patterns 
In the electron diffraction patterns certain of the 

Kikuchi lines were doubled. The patterns from the 
specimens L and A were very similar (Fig. 2). In some 
projections no doubled lines were observed (Fig. 2a). 
Some of the lines are very sharp and some broad and 
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Fig. 1. Dark-field image of specimen A using a pair of e retlexions. "Fhe lamellae (periodicity about 2000 ,~), a domain texture 
(200-500 A) and the superlattice (32 ,~) can be recognized. 200 kV. 

[ To Jace p. 708 
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Fig. 2. Kikuchi patterns from the specimens L (left) and A (right). 
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diffuse. The maximum splitting was found to occur 
for both specimens for the lines 402 [Fig. 2(c) and (d)]. 
The similarity between the Kikuchi patterns from the 
two specimens is well demonstrated in Fig. 2(e) and 
(f). The superstructure (,,~ 32 A) or the domain struc- 
ture (,-~200-500 •) do not give rise to the doubled 
Kikuchi lines. These lines are due to the lamellae 
(,--1000 A) which have different compositions. 

The intensity ratio of the two split lines was nearly 
constant across specimen L, but varied in specimen 
A, whereas the distance between the lines changed 
only slightly. This indicates the composition and lat- 
tice constants of the two exsolved phases to be similar 
across the specimen, whereas the volume fraction of 
the two phases (and hence mean composition) varies. 

The procedure for indexing the Kikuchi lines was 
greatly simplified by computer generation of Kikuchi 
patterns. The applied method was similar to the pro- 
cedure developed by Pirouz & Boswarva (1974). 

The separation was measured for about 85 Kikuchi 
lines from L and 93 lines from A. The angles q~ were 
calculated and the maximum values for each line 

(c~i) 1 (OOl) 

\ / 

• o,7s.o.2o • 020" (0101 

Olx = 0,04 Oly = -0,105 C I = 0,0 Olx = 0,04 Oly = -0,I15 C 1 = 0,0 

O.~.x = - 0 , 0 4  O2y - 0,105 E; 2 - 0 ,0  02x = 0 ,0  O2y - 0 ,115 ¢2 = 0 ,0  

(a) (b) 

Fig. 3. The angle q) plotted in a stereographic projection for speci- 
mens L (a) and A (b). The diameter of the experimental points (the 
filled circles) is proportional to the value (p. Theoretical values 
(the curves) with lattice parameters for the best fit (see Table 2) 
are indicated. Invariant plane: (7$,24, 3). 

plotted in stereographic projections based on the mean 
lattice constants (Fig. 3). q9 values less than 0.1 ° are 
not given because of the low accuracy in these measure- 
ments. The diameter of the experimental points (the 
filled circles) is proportional to the value of q~. 

A number of shear and expansion (or contraction) 
parameters were tried in order to reproduce the ob- 
served q~ values. The results for the best agreement with 
the experimental points are shown in Fig. 3. 

The lattice constants for all three specimens are 
given in Table 2. The indicated accuracies of the par- 
ameters are discussed in the next section. 

DiScussion 

Accuracy of the method 
Since the mean lattice constants are determined by 

X-ray diffraction from a different section of the crystal 
to that studied by electron diffraction, a careful selec- 
tion of specimens is required. The accuracy in the 
determination of the lattice parameters by the split- 
Kikuchi-line method depends, then, mainly upon the 
accuracies in the following. (1) The shear and ex- 
pansion (contraction) parameters. (2) The orientation 
of the lamellar boundaries. (3) The mean lattice con- 
stants. (4) The variations in the mean composition. 
(5) The determination of q~. 

Points (3), (4), (5) have been discussed elsewhere in 
this paper. 

The influence of the shear and expansion param- 
eters was studied by varying them around the values 
which gave the best fit with the measurements. As may 
be seen from Fig. 4, large variations in the shear and 
expansion parameters give only small changes in the 
lattice constants. With different values of alx, aly, e~ 
and a2x, a2y, e2 their effect upon the differences be- 
tween the lattice parameters for the two lamellae was 
examined. The maximum possible variations in the 
parameters aix, tTiy and ei (i= 1,2) within the experi- 
mental accuracy involve small changes 6(Aq) in the 
difference Aq between the lattice parameters ql and 
q2. qi (i = 1,2) denotes one of the six lattice parameters 

Specimen Phase 
L Mean (X-ray) 

Phase 1 
Phase 2 

A Mean (X-ray) 
Phase 1 
Phase 2 

A 1 Mean (X-ray) 

Specimen Phase 
L Mean (X-ray) 

Phase 1 
Phase 2 

A Mean (X-ray) 
Phase 1 
Phase 2 

A 1 Mean (X-ray) 

Table 2. Lattice parameters of labradorite feldspars 
a (A) b (/~) c (.~.) a (o) ~ (o) 

8"178 (1) 12"865 (1) 7"115 (1) 93"55 (1) 116"23 (1) 
8"181 (1) 12"862 (4) 7"115 (1) 93"57 (2) 116"24 (1) 
8"175 (1) 12"868 (4) 7"115 (1) 93"53 (2) 116"22 (1) 
8"178 (2) 12"871 (4) 7"113 (2) 93"58 (4) 116"25 (2) 
8"181 (2) 12"868 (4) 7"112 (2) 93"60 (4) 116"26 (2) 
8"176 (2) 12"871 (4) 7"114 (2) 93"53 (4) 116"25 (2) 
8"177 (2) 12"877 (4) 7"117 (2) 93"54 (3) 116"24 (2) 

a* (/~-1) b* (A-1) c* (A-1) a* (°) fl* (°) 
0"13636 0"07791 0"15703 86"16 63"73 
0"13633 0"07793 0-15706 86"10 63.72 
0"13639 0"07788 0.15701 86-22 63"75 
0"13638 0.07787 0.15711 86-15 63"71 
0"13635 0"07789 0"15716 86"08 63"70 
0"13641 0"07786 0"15707 86"24 63"72 
0"13638 0"07783 0"15699 86"23 63"73 

(°) 
89.76 (1) 
89.84 (2) 
89.68 (2) 
89.71 (4) 
89-8o (4) 
89"65 (4) 
89"64 (3) 

~* (°) 
88.52 
88.42 
88-62 
88.56 
88-44 
88"65 
88"65 

v (h 3) 
670.0 

670-0 

670"7 
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for lamella No. i. The maximum variation in Aq due 
to allowed variations in tr~x, a~y, e~ ( i= 1,2) is given in 
Table 3. Two points should be noted: (1) the param- 
eters air have small influence upon the accuracy; (2) 
the b axis is difficult to determine since this axis is 
nearly normal to the boundary between the lamellae. 

The splitting of the Kikuchi lines is a measure of 
the difference Aq = q x - q 2  between the lattice param- 
eters of the two lamellae, whereas the X-ray diffrac- 
tion measurements determine q = Vlq 1 + v2q2 where v~ 
and v2 are the volume fractions of the lamellae 1 and 
2. Since v~ and v2 are approximately equal to ½, it is 
assumed in the following discussion that q =~q~ + q2). 
Hence the following relations between the uncertain- 
ties s~q, sq~ and sq in the parameters Aq, q~ and q hold: 

1 
(1) from Kikuchi lines: Sq/= ~ s,tq, 

(2) from X-ray diffraction: sqi = s~. (13) 

F rom these relations the accuracy of the lattice par- 
ameters can be determined. The uncertainties in the 
differences (sa~) and in the mean lattice constants (sq) 
found from the X-ray diffraction are shown in Tables 
4 and 2. F rom the relations (13) the contributions to 
the uncertainties in the different lattice parameters 
from the split Kikuchi lines and the X-ray diffraction 
may be compared. A main conclusion is that the un- 

certainties in the lattice parameters are determined 
mainly by the uncertainties in the X-ray measurements 
except for the b axes, where it is determined by the 
split-Kikuchi-line measurements. The accuracy of the 
different lattice constants is given in Table 2. 

Table 4. The uncertainties in the difference between 
the lattice parameters of  the two lamellae 

Specimen saa(A) sab(A) sac(A) sa~(°) s,l~(°) say(°) 
L 0.001 0.006 0-001 0.03 0.01 0.03 
A 0.001 0-006 0.001 0.03 0.01 0.03 

Since the split-Kikuchi-line method is based on 
assumption of invariant boundaries, the influence of 
the orientation of the boundaries on the accuracy of 
the lattice parameters was investigated. It was found 
that an error in the orientation of about 8-9 ° gave 
variations in the lattice parameters less than the ac- 
curacy shown in Table 2. Some examples are shown in 
Fig. 5 for specimen L. 

The lattice constants 
The above analysis leads to the result that a signif- 

icant difference exists between the a axes and the 
angles ~ in the two labradorite lamellae. The difference 
in the a axes can easily be explained by the charac- 

tO10) (010) 

1.  a = 8 ,180  A b = 12,871 A c - 7 ,112 A 1.  a = 8 , 1 8 1 A  b - 12 ,868 A c - 7 ,112 A 

a = 9 3 , 6 3 0  B " 1 1 6 , 2 5  ° y = 8 9 , 7 7  a - 9 3 , 6 0  ° B - 1 1 6 , 2 6  ° ¥ = 8 9 , 8 0 0  

01x = 0 , 0  ~ l y  = - 0 , 1 1 5  ¢1 " 0 , 0  01x  = 0~04 O1F - - 0 , 115  ¢1 " 0 , 0  

2 .  a - 8 ,176 A b = 1 2 , 8 7 1 A  c = 7,114 A 2 .  a - 8 ,176 A b = 1 2 , 8 7 1 A  c - 7 ,114 A 

- 93 ,53  8 = 116,25 T - 89,65 ~ " 93 ,53  ° B - U 6 , 2 5  ° T " 89,65 ° 

02x  = 0 , 0  02, / o 0 ,115 c 2 - 0 , 0  02x  - 0 , 0  a2y - 0 ,10  C 2 - 0 , 0  

(a) (b) 

(ool) 

(oio) 

1.  a = 8 ,182  A b - 12,880 / ,  c = 7,113 .~ 

a - 93 ,580 B = 116,260 y = 89,830 

O l x  - 0 , 0 4  O l y  - - 0 , 1 1 5  £1 " - 0 , 0 0 1  

2 .  m - 8 ,176  • b - 12,871 / t  c - 7 ,114  A 

ct - 93 ,53  B " 116,25 y - 89 ,65 

0 2 x  - 0 , 0  a2y  - 0 ,115  ¢2 " 0,0 

(c) 
Fig. 4. Examples of the effect of the variations in the shear and expansion parameters upon the theoretical ~0 values for specimen A. trlx, 

tr2y and el in respectively (a), (b) and (c) are different from the values given in Fig. 3(b). 

Table 3. The maximum variation in the difference between the lattice parameters of  the two lamellae due 
to allowed variations in a~x, Giy and e~ 

Specimen Parameter 6(Aa) (11,) 6(Ab) (.,~) 3(Ac) (A) 6(AoO (o) 6(Afl) (o) 6(Ay) (°) 
L aix 0"001 0"003 0"001 0"03 0"01 0"03 

triy - - 0"001 - - 0-01 
e~ 0"001 0"006 - 0"02 - 0"02 

A tr~, 0"001 0"003 - 0"03 0"01 0"03 
(Tiy . . . . . .  

ei 0"001 0"006 0"001 0"02 - 0"01 
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teristic double-crankshaft in the feldspar structure. 
This crankshaft consists of four-membered rings, alter- 
nately horizontal and vertical, extending along the a 
axis and can expand or contract in response to sub- 
stitution of M cations, to thermal vibrations and to 
stress between different domains. For alkali feldspars 
many specimens have anomalous a axis dimensions 
because during segregation of Na and K in perthites, 
the aluminosilicate framework may retain complete or 
partial continuity with consequent distortion of the 
cell dimensions of the two components (Stewart & 

Lameltar p lane:  ( 2 ,  26,  3 ) 0 " 8,0 0 

iOOl) (oo'~) 

(OlO) (OLO) 

1. a - 8 , 178  /t b - 12 ,863  A c - 7 ,116  I t  1 .  a - 8 , 180  A b = 12 ,865  A c - 7,11.5, A 

a " 9 3 , 5 2 0  B " 116,250 y = 89 ,870  a = 93 ,550  B " 116 ,250  Y = 89 , 860  

Olx  - 0 , 04  Oly  - - 0 , 105  ¢1 " 0 , 0  Olx = 0 ,0  Oly  = - 0 , 12  e: 1 = 0 ,0  

2.  a - 8 , 176  A b - 12 ,867 A c - 7 ,116  A 2.  a - 8 ,176  A b = 12,865 A c - 7 ,115 A 

a - 93,.580 8 " 116,210 Y " 89 ,650  a - 93 ,550  13 - 116 ,21  ° T = 89 , 660  

02x  " - 0 , 04  02y - 0 , 105  £2 " 0 , 0  O2x - 0 , 0  O2y - 0 , 12  £2 = 0 ,0  

(b) (a) 

Wright, 1974). Similar behaviour may be expected for 
plagioclases. 

From X-ray microanalysis of the composition of the 
two labradorite lamellae (Olsen, 1976b; Olsen & 
Lilleb6, 1976), it has been found that the An content 
varies from about 40 to 60 mol % in these specimens. 
Previous X-ray diffraction studies of the variation of 
the cell dimensions with mol % An have shown that 
only small changes in the lattice constants may be 
expected in this composition range, except for the 
angle 7 (Bambauer, Eberhard & Viswanathan, 1967). 
This is consistent with the present findings. 

Cell dimensions of feldspars depend on three main 
factors:the chemical composition, the ordering of the 
atoms and the degree of coherence between domains 
in the crystal. For alkali feldspars it has been shown 
that measurements of lattice parameters can give in- 
formation about these three factors. For plagioclases, 
however, the cell dimensions correlate so closely with 
each other that separate determination of the An 
content and the structural state has previously been 
impossible or unreliable for most plagioclases. Al- 
though the An content in the lamellae has been deter- 
mined separately by X-ray microanalysis, dark-field 
microscopy revealed very complicated domain struc- 
tures in the investigated specimens which make it dif- 
ficult to reach any conclusion about the structural 
state on the basis of the lattice parameters. 

One of the investigated specimens A1 showed no 
exsolution. The lattice constants for this specimen ob- 
tained from X-ray diffraction are in very good agree- 
ment with the results for phase 2 in the specimens L 
and A as determined by the split-Kikuchi-line method. 

(001) (001) 

Lamel lar  p lane:  ( ~ ,  26 ,  I ) 0 " 9 , 2 0  

(010) (OtO) 

1 .  a - 8 , 180  A b = 12 ,863  A c = 7 ,114  A 1 .  a - 8 , 181  A b - 12 ,867  A c - 7,11.5 A 

a = 93 ,62  ° B = 116 ,210  Y " 89 ,  800 a - 93 ,57  ° 13 = 116 ,22  ° "/" - 89 ,85  ° 

O l x  - 0 , 04  O l y  - -0 ,10.5 ¢1 " 0 , 0  01 x - 0 , 08  O l y  = - 0 , 07  ¢1 " - 0 , 0005  

2 .  a - 8 , 176  A b = 12 ,867  A c - 7 ,116  A 2. a - 8 , 175  J~ b - 12 ,870  A c - 7,11.5 A 

a = 93 ,480  B " 116,2-50 Y = 89,  720 ~ - 93 ,530  B " 116 ,240  ¥ " 89 ,690  

02x - - 0 , 04  o2y  - 0,10.5 ¢2 " 0 , 0  02  x = - 0 , 08  O2y - 0 , 07  ¢2 = 0 ,0  

(c) (a) 

Fig. 5. Examples showing the influence of the orientation of the 
boundaries upon the accuracy of the lattice parameters. In (a) and 
(c) the same shear and expansion parameters have been used as 
given in Fig. 3(a) whereas in (b) and (d) these parameters are 
changed in order to get a better fit with the curves in Fig. 3(a). 
p is the angle between the lamellar plane and (74,24,3). Specimen: L. 

Conclusion 

The split Kikuchi line method has proved very useful 
for determining lattice parameters of slightly different 
lamellar structures. The uncertainties in the param- 
eters are mainly determined by the uncertainties in the 
X-ray measurements except for the axes normal to 
the boundary between the lamellae where they are 
inherent in the split-Kikuchi-line measurements. 

In the present investigation significant differences 
could be measured between the lattice parameters a 
and between the angles 7 for the two lamellae. The 
magnitudes of these differences are about 0"005 • and 
0" 15 ° respectively. 

Although there is good agreement between the lat- 
tice parameters obtained from the different specimens, 
the present study is based only on three samples. 
Since the variations in the cell dimensions in the com- 
position range from 40 to 60 tool % An are so small, 
more crystals need to be examined before a complete 
understanding of the variations in the lattice param- 
eters is obtained. 

The author wishes to thank Dr W. L. Griffin for 
performing the electron microprobe analyses and Dr 
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J. Gj/Snnes for his interest in the present work. The 
labradori te  specimens came from the collection of the 
Mineralogical-Geological  Museum,  Oslo. 

APPENDIX 

S11 = b2c2 sin2 ct, 

$22 =c2a 2 sin 2 fl,  

$33 = a2b 2 sin 2 7,  

S12 = abc2(cos cz cos f l - c o s  )'), 

$23 =a2bc(cos fl cos ) , - c o s  ~x), 

$13 =ab2c(cos )' cos c~-cos fl), 

VE=a2bEc2(1-cos 2 c~-cos 2 fl 

- -COS 2 )' + 2 cos ~ cos fl cos )'), 

M2 1 1 
- d2qr - V 2 (Sllp2+S22q 2 

+ S33 r2 + 2S12pq + 2S23qr + 2S31pr). 
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Solving Structures with Quartets: The Least-Squares Analysis of Quartet Invariants in Space 
Group P 1 

BY CHRISTOPHER J. GILMORE 

Department o f  Chemistry, University o f  Glasgow, Glasgow G12 8QQ, Scotland 

(Received 26 March 1977; accepted 29 April 1977) 

A least-squares technique for extracting individual phase angles from a set of quartet invariants is 
described. For symmorphic space groups, this procedure offers the advantages of stability and, in non- 
centrosymmetric cases, a systematic way of defining the enantiomorph, in contrast with traditional direct 
methods employing triplets. The application to a phthalic anhydride derivative C26H1605 in space group 
P1 is described. The method is readily extended to other space groups. 

1. In~oducfion 

Crystal  structures in space group P1 are t radi t ional ly 
the most  difficult to solve by direct methods.  The 
symmorphic  nature  of the space group tends to make 
the process ill-conditioned, and the lack of equivalent 
reflexions gives rise to a paucity of sign relations of low 

associated variance. This forces the need for a relatively 
large start ing set which, in turn, implies a large 
number  of possible solutions from which the correct 
phase set may be difficult to extract. Enan t iomorph  
definition is often a haphazard  affair, since it is difficult 
to predict accurately those invariants with magni tudes  
sufficiently far from 0 or n. 


